Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Respir Crit Care Med ; 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-2235711

ABSTRACT

RATIONALE: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. OBJECTIVES: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. METHODS: We collected 147 blood, 9 lung tissue, and 36 bronchoalveolar lavage fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on bronchoalveolar lavage fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. MEASUREMENTS AND MAIN RESULTS: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19, but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. CONCLUSIONS: Our data suggest that patients with severe COVID-19 harbor IgA against pulmonary surfactant proteins B and C and that these antibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
Diagn Progn Res ; 6(1): 22, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116672

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic demands reliable prognostic models for estimating the risk of long COVID. We developed and validated a prediction model to estimate the probability of known common long COVID symptoms at least 60 days after acute COVID-19. METHODS: The prognostic model was built based on data from a multicentre prospective Swiss cohort study. Included were adult patients diagnosed with COVID-19 between February and December 2020 and treated as outpatients, at ward or intensive/intermediate care unit. Perceived long-term health impairments, including reduced exercise tolerance/reduced resilience, shortness of breath and/or tiredness (REST), were assessed after a follow-up time between 60 and 425 days. The data set was split into a derivation and a geographical validation cohort. Predictors were selected out of twelve candidate predictors based on three methods, namely the augmented backward elimination (ABE) method, the adaptive best-subset selection (ABESS) method and model-based recursive partitioning (MBRP) approach. Model performance was assessed with the scaled Brier score, concordance c statistic and calibration plot. The final prognostic model was determined based on best model performance. RESULTS: In total, 2799 patients were included in the analysis, of which 1588 patients were in the derivation cohort and 1211 patients in the validation cohort. The REST prevalence was similar between the cohorts with 21.6% (n = 343) in the derivation cohort and 22.1% (n = 268) in the validation cohort. The same predictors were selected with the ABE and ABESS approach. The final prognostic model was based on the ABE and ABESS selected predictors. The corresponding scaled Brier score in the validation cohort was 18.74%, model discrimination was 0.78 (95% CI: 0.75 to 0.81), calibration slope was 0.92 (95% CI: 0.78 to 1.06) and calibration intercept was -0.06 (95% CI: -0.22 to 0.09). CONCLUSION: The proposed model was validated to identify COVID-19-infected patients at high risk for REST symptoms. Before implementing the prognostic model in daily clinical practice, the conduct of an impact study is recommended.

3.
Case Reports in Dermatology ; 14(2):203-209, 2022.
Article in English | ProQuest Central | ID: covidwho-2027180

ABSTRACT

TEN/DRESS overlap syndrome can be difficult to diagnose, especially if it is masked by comorbidities in critically ill patients in intensive care units. The existing therapy for the two conditions is also a major challenge for the treating team. A possible alternative, especially for refractory cases, is benralizumab as an IL-5-receptor alpha-chain-specific humanized monoclonal antibody (IgG1k). We are able to show a successful treatment in this case report.

4.
PLoS Biol ; 20(7): e3001709, 2022 07.
Article in English | MEDLINE | ID: covidwho-1923649

ABSTRACT

Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Herpes Simplex , Interferon Type I , Autoantibodies , Critical Illness , Humans , Immunoglobulin G , SARS-CoV-2
5.
Clin Transl Immunology ; 10(12): e1357, 2021.
Article in English | MEDLINE | ID: covidwho-1568012

ABSTRACT

OBJECTIVES: Critically ill coronavirus disease 2019 (COVID-19) patients are characterised by a severely dysregulated cytokine profile and elevated neutrophil counts, impacting disease severity. However, it remains unclear how neutrophils contribute to pathophysiology during COVID-19. Here, we assessed the impact of the dysregulated cytokine profile on the regulated cell death (RCD) programme of neutrophils. METHODS: Regulated cell death phenotype of neutrophils isolated from critically ill COVID-19 patients or healthy donors and stimulated with COVID-19 or healthy plasma ex vivo was assessed by flow cytometry, time-lapse microscopy and cytokine multiplex analysis. Immunohistochemistry of COVID-19 patients and control biopsies were performed to assess the in situ neutrophil RCD phenotype. Plasma cytokine levels of COVID-19 patients and healthy donors were measured by multiplex analysis. Clinical parameters were correlated to cytokine levels of COVID-19 patients. RESULTS: COVID-19 plasma induced a necroptosis-sensitive neutrophil phenotype, characterised by cell lysis, elevated release of damage-associated molecular patterns (DAMPs), increased receptor-interacting serine/threonine-protein kinase (RIPK) 1 levels and mixed lineage kinase domain-like pseudokinase (MLKL) involvement. The occurrence of neutrophil necroptosis MLKL axis was further confirmed in COVID-19 thrombus and lung biopsies. Necroptosis was induced by the tumor necrosis factor receptor 1 (TNFRI)/TNF-α axis. Moreover, reduction of soluble Fas ligand (sFasL) levels in COVID-19 patients and hence decreased signalling to Fas directly increased RIPK1 levels, exacerbated TNF-driven necroptosis and correlated with disease severity, which was abolished in patients treated with glucocorticoids. CONCLUSION: Our results suggest a novel role for sFasL signalling in the TNF-α-induced RCD programme in neutrophils during COVID-19 and a potential therapeutic target to curb inflammation and thus influence disease severity and outcome.

6.
Front Med (Lausanne) ; 8: 607594, 2021.
Article in English | MEDLINE | ID: covidwho-1325533

ABSTRACT

The continued digitalization of medicine has led to an increased availability of longitudinal patient data that allows the investigation of novel and known diseases in unprecedented detail. However, to accurately describe any underlying pathophysiology and allow inter-patient comparisons, individual patient trajectories have to be synchronized based on temporal markers. In this pilot study, we use longitudinal data from critically ill ICU COVID-19 patients to compare the commonly used alignment markers "onset of symptoms," "hospital admission," and "ICU admission" with a novel objective method based on the peak value of the inflammatory marker C-reactive protein (CRP). By applying our CRP-based method to align the progression of neutrophils and lymphocytes, we were able to define a pathophysiological window that improved mortality risk stratification in our COVID-19 patient cohort. Our data highlights that proper synchronization of longitudinal patient data is crucial for accurate interpatient comparisons and the definition of relevant subgroups. The use of objective temporal disease markers will facilitate both translational research efforts and multicenter trials.

7.
Crit Care ; 25(1): 175, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1243815

ABSTRACT

BACKGROUND: Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. METHODS: Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. RESULTS: Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). CONCLUSION: In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk.


Subject(s)
COVID-19/therapy , Critical Illness/therapy , Respiratory Therapy/methods , Respiratory Therapy/statistics & numerical data , Aged , COVID-19/mortality , Critical Illness/mortality , Disease Progression , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Registries , Retrospective Studies , Time Factors , Treatment Outcome
8.
Liver Int ; 41(10): 2404-2417, 2021 10.
Article in English | MEDLINE | ID: covidwho-1238452

ABSTRACT

BACKGROUND & AIMS: Little is known about cholestasis, including its most severe variant secondary sclerosing cholangitis (SSC), in critically ill patients with coronavirus disease 19 (COVID-19). In this study, we analysed the occurrence of cholestatic liver injury and SSC, including clinical, serological, radiological and histopathological findings. METHODS: We conducted a retrospective single-centre analysis of all consecutive patients admitted to the intensive care unit (ICU) as a result of severe COVID-19 at the University Hospital Zurich to describe cholestatic injury in these patients. The findings were compared to a retrospective cohort of patients with severe influenza A. RESULTS: A total of 34 patients with severe COVID-19 admitted to the ICU were included. Of these, 14 patients (41%) had no cholestasis (group 0), 11 patients (32%, group 1) developed mild and 9 patients (27%, group 2) severe cholestasis. Patients in group 2 had a more complicated disease course indicated by significantly longer ICU stay (median 51 days, IQR 25-86.5) than the other groups (group 0: median 9.5 days, IQR 3.8-18.3, P = .001; and group 1: median 16 days, IQR 8-30, P < .05 respectively). Four patients in group 2 developed SSC compared to none in the influenza A cohort. The available histopathological findings suggest an ischaemic damage to the perihilar bile ducts. CONCLUSIONS: The development of SSC represents an important complication of critically ill COVID-19 patients and needs to be considered in the diagnostic work up in prolonged cholestasis. The occurrence of SSC is of interest in the ongoing pandemic since it is associated with considerable morbidity and mortality.


Subject(s)
COVID-19 , Cholangitis, Sclerosing , Jaundice , Cholangitis, Sclerosing/complications , Critical Illness , Humans , Intensive Care Units , Retrospective Studies , SARS-CoV-2
9.
Cell Rep Med ; 2(4): 100229, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1129218

ABSTRACT

The impact of secondary bacterial infections (superinfections) in coronavirus disease 2019 (COVID-19) is not well understood. In this prospective, monocentric cohort study, we aim to investigate the impact of superinfections in COVID-19 patients with acute respiratory distress syndrome. Patients are assessed for concomitant microbial infections by longitudinal analysis of tracheobronchial secretions, bronchoalveolar lavages, and blood cultures. In 45 critically ill patients, we identify 19 patients with superinfections (42.2%). Superinfections are detected on day 10 after intensive care admission. The proportion of participants alive and off invasive mechanical ventilation at study day 28 (ventilator-free days [VFDs] at 28 days) is substantially lower in patients with superinfection (subhazard ratio 0.37; 95% confidence interval [CI] 0.15-0.90; p = 0.028). Patients with pulmonary superinfections have a higher incidence of bacteremia, virus reactivations, yeast colonization, and required intensive care treatment for a longer time. Superinfections are frequent and associated with reduced VFDs at 28 days despite a high rate of empirical antibiotic therapy.


Subject(s)
COVID-19/pathology , Respiration, Artificial , Superinfection/diagnosis , Aged , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/complications , COVID-19/virology , Cohort Studies , Critical Illness , Enterococcus faecalis/isolation & purification , Female , Humans , Incidence , Intensive Care Units , Length of Stay , Male , Middle Aged , Pseudomonas aeruginosa/isolation & purification , SARS-CoV-2/isolation & purification , Superinfection/complications , Superinfection/epidemiology , Time Factors
10.
Antimicrob Resist Infect Control ; 10(1): 11, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1028830

ABSTRACT

BACKGROUND: In intensive care units (ICUs) treating patients with Coronavirus disease 2019 (COVID-19) invasive ventilation poses a high risk for aerosol and droplet formation. Surface contamination of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) or bacteria can result in nosocomial transmission. METHODS: Two tertiary care COVID-19 intensive care units treating 53 patients for 870 patient days were sampled after terminal cleaning and preparation for regular use to treat non-COVID-19 patients. RESULTS: A total of 176 swabs were sampled of defined locations covering both ICUs. No SARS-CoV-2 ribonucleic acid (RNA) was detected. Gram-negative bacterial contamination was mainly linked to sinks and siphons. Skin flora was isolated from most swabbed areas and Enterococcus faecium was detected on two keyboards. CONCLUSIONS: After basic cleaning with standard disinfection measures no remaining SARS-CoV-2 RNA was detected. Bacterial contamination was low and mainly localised in sinks and siphons.


Subject(s)
Bacteria/isolation & purification , COVID-19/therapy , Disinfection/methods , Equipment Contamination/statistics & numerical data , Intensive Care Units/statistics & numerical data , Aerosols/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , COVID-19/virology , Cross Infection/microbiology , Cross Infection/prevention & control , Cross Infection/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Tertiary Healthcare/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL